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On diffusion theory in turbulence

J.J.H. BROUWERS
Department of Mechanical Engineering, Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven
The Netherlands

Received 30 November 2001; accepted in revised form 25 July 2002

Abstract. The Fokker-Planck equation for the probability density of fluid particle position in inhomogeneous un-
steady turbulent flow is derived. The equation is obtained starting from the general kinematic relationship between
velocity and displacement of a fluid particle and applying exact asymptotic analysis. For (almost) incompressible
flow the equation reduces to the convection diffusion equation and the equation pertaining to the scalar gradient
hypothesis. In this way the connection is established with eddy diffusivity models, widely used in numerical codes
of computational fluid dynamics. It is further shown that within the accuracy of the approximation scheme of
the diffusion limit, diffusion constants can equally be based on coarse-grained Lagrangian statistics as defined
by Kolmogorov or on Eulerian statistics in a frame that moves with the mean Eulerian velocity as proposed by
Burgers. The results presented for diffusion theory are the leading terms of asymptotic expansions. Truncated
terms are higher-order spatial derivatives of the probability density or of the scalar mean value with coefficients
based on cumulants higher than second order of fluid velocities and their derivatives. The magnitude of these terms
has been assessed by employing scaling rules of turbulent flows in pipes and channels, turbulent boundary layers,
turbulent jets, wakes and mixing layers, grid turbulence, convective layers and canopy turbulence. It reveals that
a true diffusion limit does not exist. Although truncated terms can be of limited magnitude, a limit process by
which these terms become vanishingly small and by which the diffusion approximation would become exact does
not occur for any of the cases of turbulent flow considered. Applying the concepts of diffusion theory resorts to
employing approximate methods of analysis.
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1. Introduction

Fluid flow in nature and engineering applications is nearly always turbulent. Velocities, pres-
sures and other fluid-mechanical variables fluctuate randomly in time and space. These fluc-
tuations strongly influence the ability of the fluid to transport matter, momentum and heat.
Fundamental understanding of this process is a key target of research in turbulence.

Transport by turbulent flow is generally dominated by the large-scale components of the
turbulence. Theories of large-scale turbulence are due to Taylor [1, 2], Prandtl [3] Von Karman
[4] and others. They originate from the assumed resemblance between turbulent fluctuations
and molecular chaos. Expressions for transport of matter, momentum and energy are formu-
lated analogous to the phenomenological descriptions of diffusion of matter, viscous transport
of momentum and conduction of heat by random motion of molecules. Constants of pro-
portionality can be measured and can be used to predict parameters of turbulent transport in
similar flow configurations.

Though widely used, the phenomenological theories of large-scale turbulence are semi-
empirical. The phenomenological descriptions, viz. the gradient hypotheses of mass, momen-
tum and energy, are postulated but their validity has yet to be proven. Furthermore, in these
theories the statistical parameters of turbulence are treated at a modest level. More exact and
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detailed theories exist for specific areas. Taylor [5] developed the concept of homogeneous
isotropic turbulence, a mathematical idealization by which it is possible to derive expressions
for statistical quantities which explain important aspects of turbulent flow. In his investigation
of diffusion by continuous movements in homogeneous isotropic fields [6], diffusion of for-
eign matter was shown to be related to the time correlation of the random velocity of tagged or
marked fluid particles. This essentially Lagrangian-based description enabled the observations
of the spatial spread downstream of a point source to be explained. Comprehensive treatises on
homogeneous isotropic turbulence and diffusion in homogeneous turbulence have been given
by Batchelor [7, 8]. The application of homogeneous isotropic turbulence including certain
generalizations to real turbulent flow was facilitated by Kolmogorov [9, 10]. His similarity
hypotheses provided the basis for the description of the small-scale components of turbulent
flow at very high Reynolds number according to the concept of locally homogeneous isotropic
turbulence, see [11, Chapter 8].

Several other efforts have been made to contribute to the theoretical development of sta-
tistical turbulence: see, e.g., the textbooks of Monin and Yaglom [12, 11], Hinze [13] and
Tennekes and Lumley [14] or the review article of Hunt [15]. Monin [16] and Lundgren [17]
were the first to formulate and study the dynamical equations for the time evolution of the
probability density distribution of Eulerian fluid velocity fluctuations. A promising approach
involves the application of Markov theory. Under the assumption that evolution times are
large compared to the correlation time of the underlying stochastic process, the variables of
turbulent flow are approximated by those of a Markov process. This enables the probability
density of the stochastic variable to be described by a Fokker-Planck equation. Alternatively,
the behaviour of the variable in time can be described by an equivalent Langevin or fluctuation
equation in which random forcing occurs through white-noise. Application of the Markov
approximation to the displacement of a marked fluid particle in homogeneous uniform turbu-
lent flow yields the diffusion equation.The Markov approach has further been applied to the
stochastic process of velocities of marked particles in turbulent flow: e.g. [18, 19, 20, 21].

Despite the numerous efforts and high level of mathematical methods employed, funda-
mental questions on the theory of statistical turbulence have remained unanswered. Though
widely used in numerical codes of computational fluid dynamics, the correctness of the phe-
nomenological theories of large scale turbulence has been subjected to doubts: see [14, Sec-
tion 2.2] and [22, Section 4.4]. Equally, the validity of diffusion theory or the Markov approx-
imation for fluid particle displacement, which is thought to underlie the phenomenological
theories, has been questioned [18]. It is still unclear how and under which limit conditions
the general stochastic process of turbulent flow might reduce to that of diffusion theory or
the Markov approximation of particle displacement and what the precise relationship of these
theories is with the phenomenological theories.

Uncertainty on the position of diffusion theory can be attributed to the common practice
of assuming Fokker-Planck and Langevin equations rather than deriving them from general
principles. It has among others therefore remained unnoticed that for the nonlinear fluctuation
equations of turbulent flow, the limit of long evolution times is not sufficient to arrive at the
Markov process of fluid particle displacement. As the present analysis will show, conditions
are also imposed on the magnitudes of the nonlinear terms apparent in case of real inho-
mogeneous turbulent flow. The form of these terms influences the validity and form of the
Fokker-Planck equation and the Langevin equation associated with it.

Another source of uncertainty is the representation of the coefficients in the postulated
Fokker-Planck and Langevin equations. These are usually given in terms of the Lagrangian



Diffusion theory in turbulence 279

statistics of coarse-grained fluid particle motion. The determination of these coefficients in
inhomogeneous turbulent flow is practically impossible. It gives rise to a practice in which
coefficients are treated as parameters to be chosen. Their values are determined by fitting
predictions to measurements. As the coefficients are space-dependent and sometimes time-
dependent as well, falsification of the thus established theory is an almost impossible task.
Forecasts in situations other than those tested are surrounded by uncertainty as a result. Efforts
to specify the coefficients in terms of better measurable Eulerian-based statistics have only
been successful for the Langevin equation for particle velocity in isotropic grid turbulence;
e.g. [19, 20, 23].

The present analysis is aimed at avoiding the above shortcomings. Instead of postulating
the Fokker-Planck equation is, derived starting from the general kinematic relationship be-
tween particle velocity and displacement and applying exact asymptotic analysis. In this way
conclusive answers are given on the various questions of diffusion theory including its validity
in turbulent fluid flow.

The derivation of the Fokker-Planck equation for particle position is given in Section 2,
while elementary forms of the equation and the equations pertaining to the gradient hypothesis
are derived in Section 3. The connection between Lagrangian and Eulerian statistics appro-
priate for the diffusion limit is treated in Section 4. The conditions under which the diffusion
limit holds and the extent to which these are satisfied for actual cases of turbulent flow are
discussed in Section 5. Conclusions are summarized in Section 6.

2. Derivation of the Fokker-Planck equation

The objective is to derive descriptions for the probability-density distribution of the position
of a discrete fluid particle in inhomogeneous unsteady turbulent flow. Here a discrete fluid
particle is a fluid particle that is marked at some point without disturbing the flow field, or
a substance that is added at some point and moves with the fluid as if it is part of it. Fluid
velocities are described as

uν(x, t) = u0
ν(x, t) + εu

′
ν(x, t), for ν = 1, 2, 3, (1)

where u0
ν(x, t) is the ensemble mean velocity,

u0
ν(x, t) = 〈uν(x, t)〉 , (2)

εu
′
ν(x, t) is the fluctuating component of fluid velocity, t is time and x is space coordinate.

The stochastic process uν(x, t) has finite correlation time. In accordance with the assumed
possibility of unsteadiness of the turbulent flow, ensemble averages involving uν(x, t) are
allowed to vary in a deterministic manner with time. Ensemble average here means mean
value at a specific position and a specific moment in time having repeated the process many
times. When ergodicity is adopted, for stationary processes ensemble averages can be taken
equal to time averages which are easier to assess in practice.

In the subsequent analysis a theoretical approach is presented which is based on the ap-
plication of asymptotic expansions involving powers of ε. Equation (1) may suggest that this
implies restriction to fluctuating velocities, which are small compared to mean velocity, but
this is not the case. Rather than mean velocity, fluctuating velocities are required to be small
compared to L/τc, where τc is correlation time of fluid particle velocity and L external length
scale [11] or integral scale [14]: e.g., thickness of a turbulent boundary layer, radius of a pipe
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or width of a channel in which turbulent flow takes place, mesh spacing of a grid producing
turbulence, or cross-sectional dimension of a turbulent jet, wake or mixing layer. This can be
indicated by

ε � 1, (3)

where

ε = τcũ

L
, (4)

ũ representing the order of magnitude of the fluctuating part of fluid velocity, e.g., the standard
deviation of fluid velocity. Condition (3) implies that the random displacement of a fluid
particle measured over a time period which corresponds to the correlation time of fluid particle
velocity is required to be small compared to the external length scale. While displacements due
to random velocities are required to be small during periods of correlation, this restriction is
not imposed on displacement by the mean fluid motion; it can be large or small. The parameter
ε corresponds to the Kubo number employed in stochastic analysis [24] or the inhomogeneity
index referred to in the modeling of atmospheric turbulence [20]. For the diffusion limit to
hold, it appears necessary that ε � 1. Under this condition results pertinent to the diffusion
limit are obtained as the leading terms of perturbation expansions involving powers of ε. These
are presented in the present and subsequent sections. The necessity of ε � 1 and the extent
to which this condition is satisfied for actual cases of turbulent fluid flow are discussed in
Section 5.

The position xν(t) of any passively marked fluid particle initially at xν(0) at t = 0 is
described by the equation

ẋν(t) = u0
ν(x(t), t) + εu

′
ν(x(t), t), (5)

where the dot denotes differentiation with respect to time and where fluid velocities are eval-
uated at the position of the particle. In (5), x(t) denotes the Lagrangian position of the marked
particle which varies with time, this is in contrast to x which denotes fixed spatial position in
an Eulerian specification of variables. The case of zero perturbed flow, i.e., ε = 0 in (5), is
used to implement a transformation of variables. To this end y(t; z) denotes the solution of the
equation of the mean flow

ẏν(t) = u0
ν(y(t), t), (6)

subject to the initial condition

yν(0) = zν. (7)

Next, a new variable x∗(t) is defined by x(t) = y(t; x∗(t)): for each moment in time t its
value is such that, when starting from position x∗

ν (t) and following a path according to the
mean flow field, one arrives at time t at the same position as the particle which starts from
xν(0) and follows the path described by (5). Noting that

ẋν(t) = u0
ν(x(t), t) + ẋ∗

µ(t)
∂yν

∂zµ
(t; x∗(t)) (8)

with the Einstein summation convention being employed, one obtains from (5) for x∗
µ(t) the

equations of motion
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ẋ∗
µ(t) = εu∗′

µ (x
∗(t), t), (9)

subject to the initial condition that x∗
µ(0) = xµ(0). The velocity u∗′

µ = u∗′
µ (x

∗(t), t) is defined
by

u∗′
µ =

(
∂y

∂z
(t; x∗(t))

)−1

µk

u
′
k(y(t; x∗(t)), t). (10)

The net result of the above transformation of variables is that a fluctuation equation for the
transformed variable x∗ has been obtained in which the terms on the right-hand side are O(ε):
cf. (9). For such a fluctuation equation a Fokker-Planck or diffusion equation has been derived
by Stratonovich [25]. It evolves as the leading terms of an asymptotic expansion involving
powers of ε considering times that are large compared to the correlation time of the stochastic
process underlying the right-hand side of (9): [25, Sections 4.8 and 4.9]. Truncating terms of
O(ε3) and larger, one can write the equation as (cf. [25, Equation 4.194]

∂p∗

∂t
= −ε

∂

∂x∗
ν

(
〈
u∗′
ν

〉
p∗)

−ε2
∫ ∞

0
dτ

∂

∂x∗
ν

(〈〈∂u
∗′
ν

∂x∗
µ

(x∗, t)u∗′
µ (x

∗, t − τ)〉〉p∗)

+ε2
∫ ∞

0
dτ

∂2

∂x∗
ν ∂x

∗
µ

(〈〈u∗′
ν (x

∗, t)u∗′
ν (x

∗, t − τ)〉〉p∗),

(11)

where 〈〈·〉〉 denotes the cumulant. Equation (11) can be simplified to

∂p∗

∂t
= ε2 ∂

∂x∗
ν


 ∞∫

0

dτ

〈
u∗′
ν (x

∗, t)
∂

∂x∗
µ

(u∗′
µ (x

∗, t − τ)

〉
p∗)


 , (12)

where p∗ = p∗(x∗, t) is transient probability density distribution; i.e., the probability that
x∗(t) has a value between x∗ and x∗ + dx∗ is p∗(x∗, t)dx∗. In the step from (11) to (12) use
has been made of the property that u∗′

µ has zero mean. It is noted that statistical averages on
the right-hand side of (12) are taken with x∗ fixed, i.e., x∗(t) ≡ x∗.

Equation (12) for p∗(x∗, t) can be transformed into a Fokker-Planck equation for p(x, t)
using relationships between x∗

ν and xν

xν(x∗, t) = xν, xν(x∗, t − τ) = x−τ
ν . (13)

Here, x−τ is the position of a fluid particle at time t−τ while being at x at time t when moving
according to mean Eulerian fluid velocity. In accordance with (6) and (7) it is determined by
the equations

ẋtν = u0
ν(x

t , t), x0
ν = xν. (14)

Probability densities are related to each other by

p∗(x∗, t) =
∣∣∣∣ dx
dx∗

∣∣∣∣p(x, t), (15)

where |dx/dx∗| is the Jacobian of the co-ordinate transformation x∗ → x. Furthermore
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∂p∗

∂t
=

∣∣∣∣ dx
dx∗

∣∣∣∣
{
∂p

∂t
+ ∂

∂xν

{
u0
ν(x, t)p

}}
, (16)

and ∣∣∣∣ dx
dx∗

∣∣∣∣ =
∣∣∣∣ dx
dx−τ

∣∣∣∣
∣∣∣∣dx−τ

dx∗

∣∣∣∣ , (17)

∂

∂x∗
j

{
∂x∗

j

∂xk
u

′
k(x, t)

∣∣∣∣ dx
dx∗

∣∣∣∣
}

=
∣∣∣∣ dx
dx∗

∣∣∣∣ ∂u
′
l (x, t)
∂xl

, (18)

so that∣∣∣∣dx∗

dx

∣∣∣∣ ∂

∂x∗
ν

{
u∗′
ν (x

∗, t)
∂

∂x∗
µ

{
u∗′
µ (x

∗, t − τ)

∣∣∣∣ dx
dx∗

∣∣∣∣
}}

=
∣∣∣∣dx∗

dx

∣∣∣∣ ∂

∂x∗
ν

{
∂x∗

ν

∂xi
u

′
i (x, t)

∂

∂x∗
j

{
∂x∗

j

∂x−τ
µ

u
′
µ(x

−τ , t − τ)

∣∣∣∣ dx
dx∗

∣∣∣∣
}}

= ∂

∂xm

{∣∣∣∣dx−τ

dx

∣∣∣∣ u′
m(x, t)

∂

∂x−τ
n

{
u

′
n(x

−τ , t − τ)

∣∣∣∣ dx
dx−τ

∣∣∣∣
}}

(19)

Upon substituting the above relations in (12) one obtains for p = p(x, t) the equation

∂p

∂t
= − ∂

∂xν
(u0

ν(x, t)p)

+ε2 ∂

∂xν


 ∞∫

0

dτ

〈
u

′
ν(x, t)

∣∣∣∣dx−τ

dx

∣∣∣∣ ∂

∂x−τ
µ

(
u

′
µ(x

−τ , t − τ)
〉 ∣∣∣∣ dx

dx−τ

∣∣∣∣p
)

 (20)

Equation (20) is the Fokker-Planck equation for the probability density of particle position
in inhomogeneous unsteady turbulent flow of the type described by (1)-(5). The equation has
been arrived at starting from the Lagrangian specification of the position of a marked fluid
particle: cf. (5). The derivation involves the description of the random displacements relative
to coordinates moving with the mean flow field: cf. (6) and (7). In this way Stratonovich’s
formulation [25] of the diffusion or Fokker-Planck equation becomes applicable. This for-
mulation is limited to stochastic processes in which values of both mean and fluctuating
components remain small over time periods of correlation: cf. (9). Upon retransforming to
fixed coordinates using (13)–(19), Stratonovich’s formulation has been extended to the more
general case of stochastic processes with large mean values. The extension is of direct rele-
vance to applications of turbulent fluid flow where undisturbed mean velocities are generally
large. The Fokker-Planck equation (20) will be reduced to a more elementary form in the next
section.

An alternative derivation of the Fokker-Planck equation has been given by Van Kam-
pen [24, 29]. His derivation can be described in a sketchy way as follows. Instead of starting
from the Lagrangian specification of particle position, his derivation starts from conservation
of admixture. For any particular realization of the random turbulent flow field the concentra-
tion field of admixture ψ = ψ(x, t) in regions not containing the admixture sources is given
by the equation

∂ψ

∂t
= − ∂

∂xν
{uν(x, t)ψ} , (21)
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subject to suitably chosen boundary conditions [12, Section 10.1]. The mean concentration
field is related to the probability density distribution p(x, t) of passive tracer or marked fluid
particles as

〈ψ〉 = p(x, t), (22)

where as before angled brackets denote ensemble average. Equation (21) is a linear differential
equation for ψ with randomly fluctuating coefficients uν(x, t). It can also be written as

ψ̇ = Aψ, (23)

where the dot denotes differentiation with respect to time and A = A(x, t) is a stochastic
operator defined as

A(x, t)ψ = − ∂

∂xν
{uν(x, t)ψ} . (24)

When (23) is treated as an ordinary fluctuation equation and any dependency on x, ψ = ψ(t),
A = A(t), is disregarded, it is possible to derive an explicit expression for the ensemble av-
erage of ψ [24, 26–28]. The expression involves a perturbation expansion with the magnitude
of the fluctuations as small parameter. The coefficients in the expansion are the cumulants of
A(t). When (24) is adopted the result can be transformed into a spatially dependent diffusion-
type equation for p(x, t): see [29, Equation 19.6] and [24, Equation XVI (5.11)]. The equation
is equal to (20), except that in Van Kampen’s derivation attention has been confined to station-
ary stochastic processes u

′
ν(x, t). In this connection it is noted that turbulence behind a grid is

an example of a non-stationary process when viewed from an observer who moves with the
mean flow.

3. Elementary forms of the Fokker-Planck equation and derivation of the gradient
hypothesis

The Fokker-Planck equation derived so far, viz. (20), is rather exotic in appearance. To reduce
the equation to a more familiar form write (20) in the alternative form

∂p

∂t
= − ∂

∂xν





u0

ν(x, t) + ε2

∞∫
0

dτ

〈
∂u

′
ν(x, t)
∂x−τ

µ

u
′
µ(x

−τ , t − τ)

〉
p




+ε2 ∂

∂xν


 ∞∫

0

dτ

∣∣∣∣dx−τ

dx

∣∣∣∣ ∂

∂x−τ
µ

(〈
u

′
ν(x, t)u

′
µ(x

−τ, t−τ)
〉 ∣∣∣∣ dx

dx−τ

∣∣∣∣p
)

 .

(25)

Employing (18), one can show that∣∣∣∣dx−τ

dx

∣∣∣∣ ∂

∂x−τ
µ

(〈
u

′
ν(x, t)u

′
µ(x

−τ , t − τ)
〉 ∣∣∣∣ dx

dx−τ

∣∣∣∣p
)

=

= ∂

∂xµ

(
∂xµ

∂x−τ
i

〈
u

′
ν(x, t)u

′
i (x

−τ , t − τ)
〉
p

)
.

(26)

Furthermore,
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∂u

′
ν(x, t)
∂x−τ

µ

u
′
µ(x

−τ , t − τ)

〉
= ∂

∂xµ

(
∂xµ

∂x−τ
i

〈
u

′
ν(x, t)u

′
i (x

−τ , t − τ)
〉)

−u
′
ν(x, t)

∂u
′
µ(x

−τ , t − τ)

∂x−τ
µ

(27)

When (26) and (27) are implemented into the right-hand side of (25), the Fokker-Planck
equation takes the form

∂p

∂t
= − ∂

∂xν

((
u0
ν + ε2cν

)
p
) + ε2 ∂

∂xν

(
Kνµ

∂p

∂xµ

)
. (28)

where cν = cν(x, t) is drift due to compressibility defined as

cν = −
∞∫

0

dτ

〈
u

′
ν(x, t)

∂u
′
µ(x

−τ , t − τ)

∂x−τ
µ

〉
, (29)

while Kνµ = Kνµ(x, t) is a general diffusivity tensor defined as

Kνµ =
∞∫

0

dτ
∂xµ

∂x−τ
i

κνi, (30)

with κνi = κνi(x, t, τ ) being space-time Eulerian correlation:

κνi =
〈
u

′
ν(x, t)u

′
i (x

−τ , t − τ)
〉
; (31)

i.e., the time correlation of Eulerian fluid velocities measured in a frame that moves with
the mean Eulerian fluid velocity (cf. (28)). The drift term in (28) represents the effect of
compressibility. For incompressible flow

∂u
′
i(x, t)
∂xi

= 0, (32)

so that cν = 0. The result is that Fokker-Planck equation (28) reduces to a conventional
convection-diffusion equation (see also [29, Equation 19.9])

∂p

∂t
= −u0

ν

∂p

∂xν
+ ε2 ∂

∂xν
(Kνµ

∂p

∂xµ
) (33)

The equation holds for inhomogeneous non-uniform turbulent flows for which ε � 1 and for
which the incompressibility assumption is justified, i.e., for flows involving velocities which
are less than the velocity of sound such that the square of the Mach number is much smaller
than unity.

The above result shows that for (almost) incompressible flow and provided that ε � 1
the phenomenological description of dispersion due to turbulent fluctuations can be described
analogous to that of molecular diffusion. The diffusion constant Kνµ is a tensor whose el-
ements are determined by space-time correlations of Eulerian-based fluid velocities. In the
expression for Kνµ, account is taken of inhomogeneity of the fluctuating flow field through the
term Kνµ in (30), and non-uniformity of the mean flow field through the term (∂/∂x−τ

i )xµ in
(30). In regions of (almost) uniform mean flow, e.g., in the centre of a pipe, or for diffusivities
Kνµ in which the value of µ coincides with a direction perpendicular to the mean flow one
can take (∂/∂x−τ

i )xµ = δiµ where δiµ is the Kronecker delta, so that (30) reduces to
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Kνµ =
∞∫

0

dτκνµ. (34)

That is, the diffusion tensor is directly determined by the time correlations of Eulerian ve-
locities in corresponding directions assessed in a frame that moves with the mean velocity.
The term (∂/∂x−τ

i )xµ in (30) is unequal to δiµ in case of non-uniform mean flow and values
of µ which coincide with the direction of the mean flow. In that case the value of Kνµ

for any particular ν and µ depends on correlations between fluctuating velocities in direc-
tions other than those corresponding to the values µ taken in evaluating Kνµ. The factor
(∂/∂x−τ

i )xµ quantifies both dispersion by Eulerian velocity fluctuations in corresponding
directions and dispersion by changes in mean velocity when following a marked particle
through non-uniform mean flow. Interestingly, (34), that is the expression for the diffusivity
which holds when (∂/∂x−τ

i )xµ = δiµ, is in line with previously made and largely empirically
based proposals which started with Burgers’s idea [30] to approximate Lagrangian-based
correlations by Eulerian correlations in a frame that moves with the mean velocity. Using
such correlations to determine particle dispersion in almost uniform mean flow was further
brought forward in ]31–35], including some preliminary experimental results for fully devel-
oped turbulent flow in the interior of a pipe in support of it. Experimental investigations on
space-time correlations have further been reported in [36–38].

Substituting the expression for u0
ν given by (1) in (21) and taking the mean, one obtains for

conservation of admixture in mean sense the equation

∂ 〈ψ〉
∂t

= −∂
(
u0
ν 〈ψ〉)
∂xν

− ε
∂

〈
u

′
νψ

〉
∂xν

. (35)

Noting that 〈ψ〉 = p, the above equation combined with (28) yields for
〈
u

′
νψ

〉
the relation〈

u
′
νψ

〉
= εcν − εKνµ

∂ 〈ψ〉
∂xµ

, (36)

which for (almost) incompressible flow reduces to〈
u

′
νψ

〉
= −εKνµ

∂ 〈ψ〉
∂xµ

. (37)

With this result the scalar gradient hypothesis has been obtained. It is of tensor form with the
coefficients defined by (30). The result is valid under the same conditions as those identified
for the convection-diffusion equation, i.e., ε � 1 and incompressible flow. As for low-
Mach-number-flow temperature fluctuations and admixture concentration are described by
the same equation [12, Section 1.5], the above result also confirms under the same conditions
the gradient hypothesis for temperature with Kνµ defined by (30) being turbulent thermal
diffusivity.

4. Lagrangian-Eulerian statistical relationships

A common procedure is to postulate the Fokker-Planck equation under the assumption that
evolution times are large compared to the correlation time of the underlying stochastic process.
The coefficients of the equation are given in terms of coarse-grained Lagrangian-based statis-
tical summaries of the process. The objective of the present analysis is to relate this version of
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the Fokker-Planck equation with the Fokker-Planck equation with Eulerian-based coefficients
derived in the previous sections. For this purpose asymptotic expansions based on powers of
ε are developed which describe Lagrangian-based statistical properties in terms of fixed-point
velocity statistics in a frame that moves with the mean Eulerian velocity. In this way it will be
shown that for the conditions under which the diffusion limit holds, i.e., ε � 1, Lagrangian
and Eulerian-based versions of diffusion theory are fully compatible with each other. Later
(in Section 5) it will be shown that for turbulent flow ε = O(1): i.e., the conditions under
which the diffusion limit holds (ε � 1) are not satisfied. The importance of the presented
Lagrangian-Eulerian statistical relationships is that, though inaccurate when ε = O(1), they
still hold to order of magnitude. Hence, they provide the possibility to estimate orders of mag-
nitude of Lagrangian-based statistical parameters by their better assessable and measurable
Eulerian counterparts. Another important conclusion to be derived from the present results is
that the conditions of validity of diffusion theory are the same for both the Eulerian and the
Lagrangian representations. The presented relationships enable the Eulerian formulation to be
transformed into the Lagrangian formulation. The latter is subject to the same truncation error
as the former, which is assessed in Section 5.

Given the fluctuation equation (9), the evolution of the displacement variable x∗
µ starting

from the initial condition x∗
µ(0) at t = 0 can be described by the expansion [25, Equa-

tion 4.187]:

x∗
µ(t) = x∗

µ(0) + ε

t∫
0

u∗′
µ (x

∗
0, t1)dt1

+ε2

t∫
0

dt1
∂u∗′

µ

∂x∗
m

(x∗
0, t1)

t1∫
0

u∗′
m(x

∗
0, t2)dt2 + O(ε3)

(38)

where x∗
0 = x∗(0) .The above expansion leads to expressions for x∗

µ(t) which are based on
fixed-point statistics. Upon transformion to the inertial frame, it leads to expressions based on
Eulerian velocity statistics in a frame that moves with the mean Eulerian velocity. Differenti-
ation of (38) with respect to time yields

ẋ∗
µ(t) = εu∗′

µ (x
∗
0, t) + ε2

∂u∗′
µ (x

∗
0, t)

∂x∗
m0

t∫
0

u∗′
m(x

∗
0, t1)dt1 + O(ε3) (39)

which can be used to derive an expansion for fluctuating particle velocity in the fixed frame
as follows

u
′
ν(x(t), t) = ε−1ẋ∗

µ(t)
∂yν

∂zµ
(t; x∗(t)) = ∂yν

∂zµ
(t; x∗(t))u∗′

µ (x
∗
0, t)

+ε
∂yν

∂zµ
(t; x∗(t))

∂u∗′
µ (x

∗
0, t)

∂x∗
m0

t∫
0

u∗′
m(x

∗
0, t1)dt1 + O(ε2) = ∂yν

∂zµ
(t; x∗

0)u
∗′
µ (x

∗
0, t)

(40)
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+ε
∂

∂x∗
m0

(
∂yν

∂zµ
(t; x∗

0)u
∗′
µ (x

∗
0, t)

) t∫
0

u∗′
m(x

∗
0, t1)dt1 + O(ε2) = u

′
ν(y(t; x∗

0), t)

+ε
∂u

′
ν(y(t; x∗

0), t)

∂x∗
m0

t∫
0

(
∂y

∂z
(t1, x∗

0)

)−1

mk

u
′
k(y(t1; x∗

0), t1)dt1 + O(ε2)

= u
′
ν(x

t
0, t) + ε

t∫
0

∂u
′
ν(x

t
0, t)

∂xσk0

u
′
k(x

σ
0 , σ )dσ + O(ε2)

where application has been made of (6)–(10) and (13)–(14) and where xt0 is position at time
t while being at x0 at t = 0 moving with the mean Eulerian velocity. The above result can
be generalized to any turbulent flow quantity Gµ(x(t), t) = Gµ(x(t), t; δ(t)) which depends
on x(t) and t with x(t) being given by (5) and on the stochastic process δ(t) underlying the
fluctuating velocity field as

Gµ(x(t), t) = Gµ(xt0, t) + ε

t∫
0

∂Gµ(xt0, t)
∂xσk0

u
′
k(x

σ
0 , σ )dσ + O(ε2) (41)

Taking the mean, one has

〈
Gµ(x(t), t)

〉 = 〈
Gµ(xt0, t)

〉 + ε

t∫
0

〈
∂Gµ(xt0, t)

∂xσk0

u
′
k(x

σ
0 , σ )

〉
dσ + O(ε2) (42)

Invoking xt0 = x1 and σ = t − τ so that xσ0 = x−τ
1 , one obtains

〈
Gµ(x(t), t)

〉 = 〈
Gµ(x, t)

〉 + ε

t∫
0

〈
∂Gµ(x, t)
∂x−τ

k

u
′
k(x

−τ , t − τ)

〉
dτ + O(ε2) (43)

where x1 naturally apprearing in the terms on the right-hand side of this equation has been
replaced by x on the grounds that this causes an error of O(ε2) only. As follows from (41), x
and x1 differ by O(ε) for periods of time during which there is correlation between particle
velocities. Replacing x1 by x in the second term on the right-hand side therefore leads to an
error of O(ε2) only. Furthermore, as u

′
k is zero-mean mean values of functions Gµ(xt0, t) differ

O(ε2) from G(x, t): This follows from applying (41) to
〈
Gµ(x, t)

〉
instead of to Gµ(x(t), t),

that is assessing the evolution of the Eulerian mean
〈
Gµ(x, t)

〉
, while following the path of a

marked particle. When mean of left and right-hand side are taken, i.e., the ensemble average of
all Eulerian mean values then leads to the conclusion that

〈
Gµ(xt0, t)

〉
and

〈
Gµ(x, t)

〉
are equal

to O(ε2). While (42) is suited to assess the evolution of statistical properties of Gµ(x(t), t)
with time for particles which start at position x0 at t = 0 moving in various directions, (43) is
convenient to determine Lagrangian-based statistical properties ofGµ(x(t), t) valid at position
x at time t .

For stochastic processes including turbulent flow it is usually assumed that the correlation
between stochastic variables rapidly decreases for t > τc. Describing stochastic variables
in the diffusion region, that is for times much larger than the correlation time, it enables to
replace the upper bound t in the integral by ∞, so that
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〈
Gµ(x(t), t)

〉 = 〈
Gµ(x, t)

〉 + ε

∞∫
0

〈
∂Gµ(x, t)
∂x−τ

k

u
′
k(x

−τ , t − τ)

〉
dτ + O(ε2) (44)

This result is a generalisation of Stratonovich’s analogous expansion for a stochastic vari-
able described by a one-dimensional fluctuation equation with small random right-hand side:
Equation (4.167) of [25]. It is the extension to stochastic variables described by systems of
fluctuation equations with large mean values: cf. (5). While the first term on the right-hand
side of (44) represents the mean of Gµ(x(t), t) disregarding correlation between x(t) and
the underlying stochastic process, the second term represents a correction due to correlation.
The result is due to applying to Gµ(x(t + #t), t + #t) the limit process #t � τc prior to
#t → 0: That is, applying coarse graining appropriate for the diffusion limit omitting short-
time behavior corresponding to the time-scale τc and then letting #t → 0. It leads to the
appearance of the correction term on the right-hand side of (44). This term would be absent
when averaging properties of particles being at position x at time t without coarse graining.
The term describes the situation shortly after marking when transients corresponding to the
time-scale τc have vanished while the particle is still in the region where the same statistical
properties apply. Relation (44) is exploited in subsequent parts of this section to express
Lagrangian-based statistical representations appropriate for the diffusion limit in terms of
Eulerian velocity statistics in a frame that moves with the mean Eulerian velocity.

The diffusion approximation applies to times after marking such that t � τc. For times
shortly after marking such that t ∼ τc, replacing t by ∞ in the integrals on the right-hand sides
of the above equations leads to relative errors of unit order of magnitude in statistical parame-
ters of particle dispersion. With increasing time after marking random particle displacement
extends over larger and larger distances whereas the absolute error due to the diffusion approx-
imation approaches a constant value. The situation is qualitatively not different from that of
turbulent spread in homogeneous isotropic turbulence [6]. Applying the diffusion approxima-
tion the relative error in the prediction of variables like the variance of particle displacement is
O(τc/t): That is, O(ε) for t ∼ ε−1τc, and O(ε2) for t ∼ ε−2τc, which corresponds to the time
scale where particle dispersion has extended to the external length scale. Although shortly
after marking the error may be of appreciable magnitude compared to the actual spread at that
time, it is small compared to the ultimate spread occurring at large times. If one is primarily
interested in large scale diffusion occurring at long times the diffusion approximation can
be applied without regard of short-time behaviour. If on the other hand one is interested in
accurate predictions shortly after marking, the diffusion approximation may be too inaccurate.
In that case one can resort to descriptions for particle dispersion starting from the fluctuation
equations for particle velocity [18–20].

Averaging left and right-hand side of (5), taking
〈
u0
ν(x(t), t)

〉 = u0
ν(x, t) and applying

expansion (44) to evaluate
〈
u

′
ν(x(t), t)

〉
, one obtains for the mean value of the velocity of fluid

particles being at position x at time t the expression:

〈ẋν(t)〉 = u0
ν(x, t) + ε2

∞∫
0

dτ

〈
∂u

′
ν(x, t)
∂x−τ

µ

u
′
µ(x

−τ , t − τ)

〉
+ O(ε3) (45)

The second term on the right-hand side of this equation represents drift. It is O(ε2) and
describes the additional mean motion a particle is subjected to shortly after marking. As this
term is of the same order of magnitude as the diffusion terms, it is to be included when relating
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the Fokker-Planck equation with Eulerian-based coefficients to the Fokker-Planck equation
with coarse-grained Lagrangian-based coefficients. For incompressible flow (45) reduces to,
to O(ε3),

〈ẋν(t)〉 = u0
ν(x, t) + ε2 ∂Kνµ(x, t)

∂xµ
, (46)

where Kνµ(x, t) is Eulerian-based diffusivity defined by (30). For the theoretical abstraction
of homogeneous turbulence, the second term vanishes and mean values of Eulerian and La-
grangian velocities become equal. It is in line with the general result that for homogeneous
turbulence in incompressible flow Eulerian and Lagrangian-based velocity statistics are equal
[39, 12].

Applying coarse graining, a Lagrangian-based diffusivity KL
νµ = KL

νµ(x, t) can be defined
along the lines of Kolmogorov as: (see Equation (10.53) of [12]),

KL
νµ = 1

2

〈〈 ˙xν(t)xµ(t)
〉〉
. (47)

Making use of〈〈
ẋν(t)xµ(t)

〉〉 = 〈〈
u

′
ν(x(t), t)xµ(t)

〉〉 =〈
u

′
ν(x(t), t)xµ(t)

〉 − 〈
u

′
ν(x(t), t)

〉
xµ

(48)

and applying expansion (44) to evaluate the terms on the right-hand side of this equation one
finds

KL
νµ = 1

2ε
2(Kνµ + Kµν) + O(ε3). (49)

It shows that apart from the multiplicative factor ε2, with a relative error of O(ε) the coarse-
grained Lagrangian-based diffusivity and the symmetrical part of the Eulerian-based diffusiv-
ity are equal to each other.

Employing (26), (45), (49), (30) and (31), the Fokker-Planck equation (25) can be ex-
pressed with a relative error of O(ε) as

∂p

∂t
= − ∂

∂xν
(〈ẋν〉p) + ∂2

∂xν∂xµ
(KL

νµp). (50)

This is the conventional Kolmogorov formulation of the Fokker-Planck equation in which
the coefficients are based on coarse-grained Lagrangian-based particle statistics. It shows
that within the order of approximation for which the diffusion limit holds, the conventional
formulation and the version with Eulerian-based coefficients are equal. Provided ε � 1 rep-
resentations appropriate for the diffusion limit which are based on coarse-grained Lagrangian
statistics are equivalent to those based on Eulerian statistics in a moving frame.

Another remarkable point is that the Lagrangian-based formulation of the Fokker-Planck
equation as given by (50) does not automatically lead to the convection-diffusion equation
and the scalar gradient hypothesis which forms the basis of the phenomenological theories of
conservation of mass and heat. Only if one presumes the relation

〈ẋν〉 = 〈uν〉 + ∂KL
νµ

∂xµ
, (51)
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(50) can be converted to a convection-diffusion equation and thereby to the scalar gradient
hypothesis. The Eulerian-based versions of the coefficients reveal the existence of such a
relation, i.e. (46), and it is found to be valid only in case of incompressible flow.

5. Validity of diffusion theory in turbulent fluid flow

The Fokker-Planck equation and the convection diffusion equation and gradient hypothesis
derived from it are the result of truncation of an asymptotic expansion involving powers of ε.
The error due to truncation can be assessed by considering the terms of O(ε3) so far omitted
in (20). For this purpose use is made of Van Kampen’s and Terwiel’s cumulant expansion
[26–28] associated with ordinary fluctuation equation (23). Adopting their expression for the
third cumulant of the ordinary process of (23) and transforming this to the present spatial
problem using (24), one obtains for the terms of O(ε3) to be added to the right-hand side of
Fokker-Planck Equation (20) the expression

−ε3 ∂

∂xν

∞∫
0

dτ

∞∫
0

dσ

〈
u

′
ν(x, t)

∣∣∣∣dx−τ

dx

∣∣∣∣ ∂

∂x−τ
µ

u
′
µ(x

−τ , t − τ)

∣∣∣∣dx−τ−σ

dx−τ

∣∣∣∣ ∂

∂x−τ−σ
k

u
′
k(x

−τ−σ , t − τ−σ )

〉 ∣∣∣∣ dx
dx−τ−σ

∣∣∣∣p,
(52)

where it is noted that the operators ∂/∂xν , ∂/∂x−τ
µ and ∂/∂x−τ−σ

k act on all terms behind them.
The terms in (52) consist of spatial derivatives higher than second order and involve triple

and higher order correlations of fluid velocities and their derivatives. The error due to neglect-
ing these terms in the Fokker-Planck equation can be assessed by comparing their magnitude
with that of the second term on the right hand side of (20). It is noted that in the diffusion limit
the magnitude of spatial derivatives of diffusional terms can be represented by L−1 where L

corresponds to the external length scale of the flow. This characterisation is also applied to
the derivatives of fluid velocities occurring in the triple correlation of (52). Furthermore it is
noted that as a result of the normalisation of u′

ν by ε, the magnitude of u′
ν can be represented

by U . One then finds that the magnitude of the third term in the expansion compares to the
magnitude of the second term as εUτcL

−1 where τc is correlation time of the random process.
The requirement εUτcL

−1 � 1 is the same as requiring that the typical displacement due
to fluctuations measured over a time period of correlation is small compared to the external
length scale of the flow: cf. (3) and (4).

In case of the theoretical abstraction of stationary homogeneous turbulence in uniform
mean flow statistical averages of the velocity field are constant in space. Lagrangian fluid
particle velocities on the right hand side of (5) can be represented by quantities which vary
randomly with time only. Solutions of the resulting linear stochastic differential equation
can be approximated by those pertinent to the diffusion limit under the only and sufficient
condition that t � τc, viz. for times after marking much larger than the correlation time:
Section 4.7 of [25]. For real turbulent flow, however, stochastic differential equation (5) is
essentially nonlinear and the diffusion approximation only holds when in addition to t � τc,
ε � 1. The condition t � τc is well-known in diffusion approximations to turbulent flow: e.g.,
Section 10.3 of [12] and [40, 41]. Conditions relating to ε, however, have not been noticed. For
processes where Eulerian velocities and all their derivatives are Gaussian, cumulants higher
than second order of velocities and their derivatives are equal to zero. It results in coefficients
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of derivatives higher than second order in the cumulant expansion leading to the Fokker-
Planck equation which are all zero. Approximating the random process of particle dispersion
by a continuous Markov process is then allowed if t � τc irrespective the magnitude of ε.
But the assumption of Gaussianity of velocities and their derivatives does not hold for real
turbulent flow. While velocities may be Gaussian, viscous-scale turbulence causes distribu-
tions of derivatives of velocities to be non-Gaussian including those for isotropic turbulence
in uniform flow behind a grid: Section 8.1 of [8]. It implies that for the diffusion limit to
hold in turbulent fluid flow under all circumstances ε must be of limited magnitude such
that contributions of cumulants higher than second order can be disregarded. This conclusion
equally applies to diffusion theory formulated in terms of coarse-grained Lagrangian-based
statistics. Using the relationships of the previous section, Eulerian-based coefficients can be
transformed into their Lagrangian-based counterparts. While doing so, the truncation error
involved with the diffusion limit remains unaltered and still requires ε � 1. In this connection
it is noted that also Planck’s and Kolmogorov’s original derivations of the Fokker-Planck
equation for nonlinear stochastic processes implied the assumption of small or infinitely small
jumps: VIII 1 of [24].

The diffusion approximation can be extended by one order in ε in case of approximately
Gaussian velocity statistics and incompressible flow. Including the terms of O(ε3) given by
(52) in the Fokker-Planck equation (20), using (32) and repeating some of the mathematical
procedures of the previous sections, one finds as ‘convection-diffusion equation’ formulated
to O(ε3) the equation

∂p

∂t
= −u0

ν

∂p

∂xν
+ ε2 ∂

∂xν

(
(Kνµ − εK1

νµ)
∂p

∂xµ

)

−ε3 ∂

∂xν
(Kνµκ

∂2p

∂xµ∂xκ
)

(53)

where

Kνµκ =
∞∫

0

∞∫
0

dσdτ
∂xµ

∂x−τ
j

∂xκ

∂x−τ−σ
i

κνji, (54)

and

κνji =
〈
u

′
ν(x, t)u

′
j (x

−τ , t − τ)u
′
i (x

−τ−σ , t − τ − σ )
〉
. (55)

while

K1
νµ =

∞∫
0

∞∫
0

dσdτ

〈
u

′
ν(x, t)

∂

∂x−σ
j

{
∂xµ

∂x−τ−σ
i

u
′
i(x

−τ−σ , t − τ − σ )

}

u
′
j (x

−σ , t − σ )
〉 (56)

For Gaussian Eulerian velocity statistics triple correlation (55) is equal to zero. The third order
derivative vanishes and (53) becomes an ordinary diffusion equation. The equation holds to
O(ε3) provided the higher order diffusivity K1

νµ defined by (56) is included. Similarly, the
accuracy of the gradient hypothesis can be improved by one order in ε by replacing Kνµ

by Kνµ − εK1
νµ in (37). The higher order term is determined by triple time-correlations of
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velocities and derivatives of velocities in a frame that moves with the mean Eulerian velocity.
Extension of the accuracy of the diffusion approximation by yet another order in ε, however, is
not feasible. For Gaussian velocity statistics the diffusivity based on the fourth order cumulant
will again be zero. But the coefficients of third order derivatives will contain fourth order
cumulants in which derivatives of the velocity field occur similar to those in (42). In view
of viscous scale turbulence such cumulants can not be expected to be zero or small. The
equation can no longer be reduced to one with derivatives of second order as highest order.
It is in accordance with the observation made previously that for the diffusion approximation
to hold in turbulent fluid flow in all circumstances ε must be of limited magnitude such that
the contributions of all cumulants involving velocities and their derivatives higher than second
order can be disregarded.

A point not considered so far is the effect of small-scale or viscous-scale turbulence. Char-
acteristic for turbulent flow is that the power spectra of stochastic variables reduce only slowly
in magnitude with increasing frequency and wave-number up to the point where viscosity
becomes important. It makes terms involving spatial derivatives of velocities apparent in (52)
correspondingly large. At the same time fluctuations associated with small-scale turbulence
correlate over very short times only. To assess the net effect use is made of Kolmogorov’s
scalings of length, time and velocity of small-scale turbulence (Equation (1.5.11) of [14])
thereby representing the mean energy dissipation rate by ũ2U/L. Orders of magnitude of
small-scale and large-scale fluctuating velocity, time and length then compare to each other as
(ε2Re)−1/4, (ε2Re)−1/2 and (ε2Re)−3/4, respectively, where Re is Reynolds number defined
as Re = UL/ν with ν being kinematic viscosity. Introducing these scalings in (52) and
considering incompressible flow, only the order of magnitude of (52) based on small-scale
turbulence compares to the order of magnitude of the diffusion term of (20) as (ε2Re)−1.
Instead of using Kolmogorov scaling it may be considered more appropriate to assess the
effect of small-scale turbulence on the basis of Tennekes’ Eulerian-based scalings for small-
scale turbulence taking account of large-scale advection of dissipative eddies [42]. The net
effect is that the scaling of time reduces by a factor (ε2Re)−1/4. It all indicates that small-
scale turbulence does not cause the presented expansions to break down as long as ε2Re
is sufficiently large. As in practical cases of turbulent flow Re is generally very large, the
condition is generally satisfied. The validity of the diffusion theory is primarily determined
by the magnitude of ε which represents the magnitude of the truncated terms according to
large-scale turbulence.

Unfortunately, a limit process ε → 0 by which the diffusion approximation would become
exact does not seem to exist in turbulent fluid flow. For turbulence in wall-bounded shear flows
such as turbulent boundary layers along walls and along the earth’s surface and turbulent flows
in pipes and channels the correlation time τc can be scaled according to ((∂/∂xk)u

0
ν)

−1 which
is the time by which fluid elements are deformed by the mean flow field. The same scaling
is obtained under the assumption that the order of magnitudes of turbulent viscosities and
diffusivities are the same and that the gradient hypothesis of momentum holds to order of
magnitude: As the covariance of fluctuating velocities scales as ũ2 and the diffusivity as ũ2τc,
τc scales as ((∂/∂xk)u

0
ν)

−1. Implementing Prandtl’s velocity defect law appropriate for the
core region of wall-bounded turbulent flow (Section XIXe of [43]) one finds τc ∼ κLu−1∗
where κ is von Karman’s constant (κ ∼ 0.4) and u∗ is friction velocity. Noting that u∗ ∼
ũ it follows from (4) that ε ∼ κ . Although ε may be less than unity, it does not become
vanishingly small in some limit process of parameters governing fluid flow, e.g., Re → ∞.
The same conclusion applies to the inertial sublayer. In this region gradients of the mean flow
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become steeper implying that correlation times become smaller. This effect is compensated
by a corresponding decrease in size L of energetic eddies so that still ε ∼ κ . In general it can
be concluded that for wall-bounded turbulence a limit process by which ε → 0 does not exist.
It also implies that a limit process by which the truncated terms in the expansion leading to
the gradient hypotheses vanish does not exist.

For turbulent jets, turbulent mixing layers and thermal plumes one may scale τc according
to LU−1 where L is cross-sectional dimension and U magnitude of mean velocity producing
the turbulence. Following (4) in this case ε ∼ ũ/U which is the ratio of fluctuating velocities
to mean velocity. According to the results of measurements this ratio has values of typically
one-fifth to one-tenth: chapter 4 of [14], chapter 6 of [13]. But also in these applications
it does not seem possible to identify a limit process of flow parameters by which ε → 0.
Examples of flow where random displacements during periods of correlation are not small in
comparison to the external length scale altogether are atmospheric turbulence within a crop or
forest canopy [20], and turbulent flow in the convective boundary layer [44]. Also for far wake
turbulence and turbulence behind a grid the limit ε → 0 does not occur. In these applications
mean velocity gradients decrease with distance from the obstacle producing the turbulence.
At distances where mean velocities are almost uniform correlation times τc scale according
to Lũ−1 where ũ corresponds to the magnitude of the fluctuating velocities. The result is that
ε as defined by (4) is of unit order of magnitude and that the asymptotic procedure leading
to the diffusion limit breaks down. Interestingly, the condition t � τc does not seem to hold
here either. Seen from an observer which moves with the uniform mean flow, the turbulence
decays with τct

−1. The limit process by which the diffusion limit is established is also the
limit process by which the turbulence disappears.

6. Conclusions

The diffusion approximation leading to the Fokker-Planck equation for fluid particle position
and the convection-diffusion equation and the scalar gradient hypothesis in case of incom-
pressible flow is valid when ε � 1; that is, when displacements due to random fluid velocity
measured over time periods where there exists correlation between velocities are small com-
pared to the external length scale of the flow. For practical cases of turbulent flow, however
ε = O(1): The limit process ε → 0 by which the diffusion approximation becomes exact does
not exist. Applying the concepts of diffusion theory resorts to employing approximate methods
of analysis. This is what seems to happen in practice. Diffusion coefficients are treated as fit
parameters which are assessed from case to case. They are determined by fitting experimental
and theoretical results on the basis of resemblance of a specific output variable. As follows
from considerations of higher order spatial derivatives being described by second order deriv-
atives only, the predictive capacity of such a model will be limited when ε is not small. Good
resemblance can only be expected to occur for the output variable for which the empirical
model has been calibrated; and only under the conditions for which the calibration has taken
place: same boundary conditions, same initial conditions and same flow configuration. Scaling
rules, however, are not violated in such an approach. As ε is order unity, truncation errors are
not small but become large neither. The effect of small-scale turbulence on the values of
diffusion coefficients is small as the Reynolds number is generally large. The representation
of coarse-grained Lagrangian statistics by Eulerian statistics in a moving frame is inaccurate
for ε = O(1) and t/τc = O(1), but correct to order of magnitude. It is within these constraints
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that diffusion theory can be applied as a semi-empirical concept or engineering approximation
in the analysis of problems of turbulent flow. In the absence of a true limit process the theory
cannot achieve the position it has obtained in the description of the macroscopic behaviour of
molecular chaos.
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